a2 United States Patent

US009286330B2

(10) Patent No.: US 9,286,330 B2

Gau et al. 45) Date of Patent: Mar. 15, 2016
(54) MIGRATION OF DATA OBJECTS USPC ooiivevieviecneercicenenen 725/36; 455/414.1
) See application file for complete search history.
(71) Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores, (56) References Cited
CA (US)
U.S. PATENT DOCUMENTS
(72) Inventors: Johnny Gau, Fremont, CA (US); Irene
Fan, Saratoga, CA (US); Rajan 8,285,762 B2 10/2012 Cannon et al.
Mahendrakumar Modi, nghlands 8,316,065 B2 11/2012 Nemoto et al.
Ranch, CO (US) 8,818,949 B2* 82014 Cline etal.ccccover. 707/638
’ 2007/0260476 Al* 112007 Smolenetal. 705/1
. 2007/0260575 Al* 11/2007 Robinson etal. 707/1
(73) Assignee: ORACLE INTERNATIONAL 2008/0307454 Al* 12/2008 Ahanger etal. 725/36
CORPORATION, Redwood Shores, 2010/0100456 AL* 4/2010 West ..ooororvvrrrovcrrrrioccn 705/27
CA (US) 2010/0120402 Al* 52010 Sethietal. 455/414.1
2013/0007387 Al 1/2013 Sakaguchi et al.
(*) Notice: Subject to any disclaimer, the term of this * cited b .
patent is extended or adjusted under 35 ciied by examuner
US.C. 154(b) by 299 days. Primary Examiner — Susan Chen
(21) Appl. No.: 13/894,755 (74) Attorney, Agent, or Firm — Miles & Stockbridge P.C.
(22) Filed: May 15, 2013 (57 ABSTRACT
. L. A system for migrating first data objects from a first reposi-
(65) Prior Publication Data tory product to a second repository product exports the first
US 2014/0344313 Al Now. 20, 2014 data objects from the first repository product into a schema.
The schema describes a logical model of the first data objects.
(51) Int.CL The system maps the first data objects to second data objects
GOGF 7/00 (2006.01) of the second repository product. The system trims the first
GO6I 17/00 (2006.01) data objects. Trimming comprises performing data modifica-
GOGF 17/30 (2006.01) tion on the first data objects so that the first data objects can be
(52) US.CL migrated to the second repository product. The system also
CPC e, GO6F 17/303 (201301) creates placeholders for the first data Objects for later deploy_
(58) Field of Classification Search ment binding.
CPC GOG6F 17/303; GO6F 17/30867; GO6F

17/30864; GOGF 17/30547

19 Claims, 4 Drawing Sheets

401 .. .
Export data objects
%
T Perform mappin
402 - pping
*‘
403 Perform trimming
¥

404 e Create placeholders

US 9,286,330 B2

Sheet 1 of 4

Mar. 15, 2016

U.S. Patent

T Aowspy

Axljeuoound
[euonippy

s123[qQ eieq Sunesfin

/

wa1sAs
Sunesadop

/

/
st

AW o1

sng

T
Aioyisodeay
\ 1055990.d UONEDILNWWOD

0ct

1

MM 1
[44

(14
ao1naQ

8T
|0JIUOD) JOSIN)

pieogAsy)

74
Aeidsig

U.S. Patent Mar. 15, 2016 Sheet 2 of 4 US 9,286,330 B2

201 200

202

E 204
203

205

206 207

Fig. 2

US 9,286,330 B2

Sheet 3 of 4

Mar. 15, 2016

U.S. Patent

90¢ 80€

Buruwil jopopy Buipuiq a3e

$S800.1d UoHRIBIHY

20€

,W sseg B1eq 921

i

U.S. Patent

401 .

404 -

Mar. 15, 2016 Sheet 4 of 4

US 9,286,330 B2

Export data objects

Perform mapping

Perform trimming

Create placeholders

Fig. 4

US 9,286,330 B2

1
MIGRATION OF DATA OBJECTS

FIELD

One embodiment is directed generally to a computer sys-
tem, and in particular to a computer system that migrates data
objects from a first repository product to a second repository
product.

BACKGROUND INFORMATION

A software product, such as a repository product (e.g., a
database), may use a particular technology stack to provide
the software solution’s specific functionality. A technology
stack may be generally understood as the layers of compo-
nents or services that are used to provide the specific func-
tionality of the software product. As a software product is
updated, the technology stack of the updated/new software
product is generally very similar to the technology stack of
the original software product.

However, in some cases, a new software product can be a
complete software rewrite of the original software product.
For example, in some cases the new software product may use
anew technology stack that is substantially different than the
original technology stack of the original software product.
For example, Oracle “Enterprise Repository 12¢” from
Oracle Corporation uses a technology stack that is substan-
tially different than the previous software product, “Oracle
Enterprise Repository 11g”” A user may wish to migrate/
transfer data objects from an original software product to a
new software product.

SUMMARY

One embodiment is a system for migrating first data
objects from a first repository product to a second repository
product. The system exports the first data objects from the
first repository product into a schema. The schema describes
a logical model of the first data objects. The system maps the
first data objects to second data objects of the second reposi-
tory product. The system trims the first data objects. Trim-
ming comprises performing data modification on the first data
objects so that the first data objects can be migrated to the
second repository product. The system also creates place-
holders for the first data objects for later deployment binding.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an overview block diagram of a computer system
for migrating data objects from a first repository productto a
second repository product in accordance with an embodiment
of the present invention.

FIG. 2 illustrates a first logical model, as represented by a
schema, in accordance with one embodiment.

FIG. 3 illustrates a process of migrating data objects in
accordance with one embodiment.

FIG. 4 is a flow diagram of the functionality of the migrat-
ing data objects module of FIG. 1 in accordance with one
embodiment.

DETAILED DESCRIPTION

One embodiment is a system that allows a user to migrate
first data objects from a first repository product to a second
repository product. Within the first repository, the first data
objects may be described and related to each otherusing a first
logical model. However, once the first data objects are

10

20

40

45

60

2

migrated to the second repository product, the first data
objects may be described by a second logical model that is
different than the first logical model. For example, Oracle
Enterprise Repository 11g (“11g”) uses alogical model that is
different than the logical model used by Oracle Enterprise
Repository 12¢ (“12¢”). 11g and 12c¢ are object-relational
databases. As such, in order to enable the first data objects to
be properly stored within the second repository product, one
embodiment maps each of the first data objects to a second
data object within the second logical model of the second
repository product. By mapping each data object from one
logical model to another logical model, all of the relationships
among the different data objects can be preserved.

As previously discussed, a first repository product (e.g.,
Oracle Enterprise Repository 11g) may use a technology
stack that is substantially different than a second repository
product (e.g., Oracle Enterprise Repository 12¢). Because the
first repository product may use a different technology stack
and a different logical model as compared to the second
repository product, the second repository product may not be
compatible with the first repository product. For example,
when a major product release occurs, although users may
wish to migrate their data objects that are stored within an
original repository product to the newly released repository
product, the newly released repository product may be a
complete rewrite of the original repository product (i.e., the
new product may be very different from the original product).
When there are differences between the original product and
the new product, it may be difficult to migrate data objects
from the original product to the new product. As such, a user
that wishes to switch from using Oracle Enterprise Reposi-
tory 11g to Oracle Enterprise Repository 12¢ may have dif-
ficulties migrating data between the two products, due to the
incompatibilities between the two products.

The approaches of the prior art are generally directed to
migrating data objects from an original repository product to
a new repository product, where the new repository product
uses a logical model and technology stack that are similar to
those used by the original repository product. When migrat-
ing data objects from an original repository product to a
similar new repository product, the prior art generally suc-
cessfully facilitated the migration by slightly modifying the
data objects contained by the original repository product to fit
the new repository product. For example, the prior art may
add new fields to the data objects so that the data objects can
be more suitably stored within the new repository product.
The solutions offered by the prior art are generally only
applicable if the original repository product and the new
repository product use similar logical models.

However, in the event that the logical-model/technology-
stack used by the original repository product is not similar to
the logical-model/technology-stack used by the new reposi-
tory product, the migration of data objects between the origi-
nal repository product and the new repository product cannot
be successtully facilitated by merely slightly modifying the
data objects. Under such circumstances, the prior art gener-
ally directs a user to re-enter all of the data objects into the
new repository product. Some other approaches of the prior
art attempt to migrate the data objects from the original
repository product to the new repository product by mapping
the data objects of the original repository product to the data
objects of the new repository product. However, the map-
pings performed by the prior art are generally ineffective in
accurately mapping all of the data objects between the two
repository products.

In contrast with the prior art, one embodiment allows a user
to migrate data objects from one repository product to another

US 9,286,330 B2

3

repository product by mapping first data objects, described by
a first logical model, to second data objects, described by a
second logical model, while preserving all of the relation-
ships among the different first data objects.

FIG. 1is an overview block diagram of a computer system
100 for migrating data objects from a first repository product
17 to a second repository product 27 in accordance with an
embodiment of the present invention. The functionality of
system 100 can be implemented as a distributed system. Sys-
tem 100 includes a bus 12 or other communication mecha-
nism for communicating information, and a processor 22
coupled to bus 12 for processing information. Processor 22
may be any type of general or specific purpose processor.
System 100 further includes a memory 14 for storing infor-
mation and instructions to be executed by processor 22.
Memory 14 can be comprised of any combination of random
access memory (“RAM”), read only memory (“ROM”), static
storage such as a magnetic or optical disk, or any other type of
computer readable media. System 100 further includes a
communication device 20, such as a network interface card,
to provide access to a network. Therefore, a user may inter-
face with system 100 directly, or remotely through a network
or any other known method.

Computer readable media may be any available media that
can be accessed by processor 22 and includes both volatile
and nonvolatile media, removable and non-removable media,
and communication media. Communication media may
include computer readable instructions, data structures, pro-
gram modules or other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any
information delivery media.

Processor 22 may be further coupled via bus 12 to a display
24, such as a Liquid Crystal Display (“LCD”). A keyboard 26
and a cursor control device 28, such as a computer mouse,
may be further coupled to bus 12 to enable a user to interface
with system 100.

In one embodiment, memory 14 stores software modules
that provide functionality when executed by processor 22.
The modules include an operating system 15 that provides
operating system functionality for system 100. The modules
further include migrating data objects module 16 that allows
a user to migrate data objects from a first repository product
17 to a second repository product 27, as disclosed in more
detail below. Second repository product 27 may be a part of
another computer system 120. System 100 can be part of a
larger system, such as a service-oriented architecture
(“SOA”) governance solution from Oracle Corporation, for
example. Therefore, system 100 will typically include one or
more additional functional modules 18 to include additional
functionality, such as data processing functionality for
exporting data objects to and from repositories. First reposi-
tory product 17 can be coupled to bus 12 to store data used
with modules 16 and 18.

As described above, one embodiment allows a user to
migrate lifecycle data objects from a first repository product
to a second repository product. Lifecycle data may be gener-
ally understood as data relating to a project. The data may
describe a product development process of the project. Life-
cycle data may allow users to more effectively manage a
project. Lifecycle data can be data relating to access control,
role assignment, workflow enforcement, and/or policy
enforcement. The process of a lifecycle can be defined into a
plurality of stages. The process of a lifecycle can progress
from one stage to another stage once certain pre-defined
criteria are met. The criteria can be defined by various stake-
holders which have certain specific roles.

20

40

45

50

55

4

To effectively migrate lifecycle data objects between a first
repository product and a second repository product, where the
lifecycle data objects are described within the first repository
using a first logical model, one embodiment of the present
invention uses an extensible markup language (“XML”)
schema to describe the first logical model. As such, the XML
schema describes the lifecycle data objects as well as the
relationships between these objects. In one embodiment, the
XML schema describes 11g project lifecycle data objects in a
high-level, object-oriented way. In one embodiment, the data
objects and the relationships between the data objects are
preserved by the XML schema, with each data object having
its own unique identifier.

FIG. 2 illustrates a first logical model, as represented by a
schema 200, in accordance with one embodiment. As
described above, in one embodiment, an XML schema is used
to describe the first logical model. As described above, the
first logical model can capture project lifecycle data objects,
their attributes, and the relationships among the data objects.
Each of the data objects can have a universal unique identifier
(“UUID”). The project lifecycle objects are represented
within XML schema 200.

At a high level, XML schema 200 comprises project life-
cycle data objects including: processes 202, tasks 203, solu-
tion components 204, and bill of materials (“BOM”) 201, for
example. Process object 202 can be an object that models a
project or business process. Process object 202 can comprise
of'one or more business task objects 203. Each task defines a
business operation needed to complete the overall project
goal. Task objects 203 can be comprised of solution compo-
nents 204. Solution components are the functional definitions
of the related business tasks’ technical implementations.
BOM object 201 can be used to describe a list of needed
objects for building and deploying a project. Business
projects have both a functional and operational side to them:
the functional side is driven by use cases, while the opera-
tional side is concerned with the specific technical compo-
nents needed to fulfill the use case.

To complete the operational side of a project lifecycle, the
XML schema can use objects including composites 205,
composite services 206, and deployments 207. Composite
205 is a container that groups services being used to imple-
ment a project or business process, and it fulfills the func-
tional definition of the related solution. Composite services
206 expose the web service interface to calling applications.
Deployments 207 provide the actual running instances of the
composites.

FIG. 3 illustrates a process of migrating data objects in
accordance with one embodiment. In one embodiment, to
migrate first data objects from the first repository product 301
to the second repository product 310, the first data objects are
exported 302 from the first repository product. As described
above, one embodiment can use an XML schema to describe
a first logical model of the first data objects during the migra-
tion process. The XML schema can be considered to be XML
seed data 303. Once the first data objects of the first logical
model are described by the XML schema, the migration pro-
cess 305 can begin. The first data objects of the first repository
are mapped to second data objects of the second repository in
a manner that preserves the first data objects and the relation-
ships between the first data objects. In one embodiment, this
mapping process involves dynamic mapping 306, model
trimming 307, and late binding 308.

In one embodiment, dynamic mapping 306 identifies what
each first data object within the first logical model of the first
repository product 301 will map to within the second logical
model of the second repository product 310. To accomplish

US 9,286,330 B2

5

dynamic mapping 306, one embodiment creates an internal
object mapping. For example, an 11g Process can be mapped
to a 12¢ Project, an 11g Task can be mapped to a 12¢ Func-
tional Activity, etc. One embodiment then dynamically regen-
erates a new set of universal identifiers and stores a hash of
data objects using their unique identifiers for later relation-
ship identification and mappings. In one embodiment, a hash
of'data objects is a mapping of each of the data objects to data
of another set.

In one embodiment, model trimming 307 is used to trim the
structures of the first data objects of the first repository prod-
ucts so that they may suitably stored in the second repository.
For example, one embodiment can trim the structures of 11g
data objects to fit into the logical model of a 12¢ repository. In
one embodiment, trimming can occur during runtime.
Because some of the structures of the first data objects within
the first logical model are different than the structures of the
second data objects within the second logical model, one
embodiment performs model trimming 307 by performing
some data modification/data transformation on the first data
objects of the first logical model. For example, in 11g, solu-
tion component relationships are modeled by a tree structure.
If model trimming 307 is applied to the solution component
relationships, model trimming 307 can flatten this tree struc-
ture and store it within a container-type of relationship. In
11g, the tree structure determined the uniqueness of the solu-
tion component; after the tree structure is flattened during
migration, a subset of the solution component’s attributes will
uniquely identify this asset instead.

In one embodiment, a late binding process 308 can be used
to identify the first lifecycle data objects that are being moved
over from the first logical model, and to create appropriate
new entities in the second logical model. Once all the neces-
sary new entities are created, a new and complete second
logical model 309 will have been generated for the second
repository 310. In one embodiment, late-binding process 308
can also be used to uniquely identify attributes of the first data
objects within the first repository product to establish place-
holders for them within the second repository product. These
placeholders can be used later when publishing the first data
objects from the first repository product to the second reposi-
tory product. In one embodiment, the publishing of the first
data objects can be performed via a separate harvesting pro-
cess. The placeholders enable first data objects to be carried
over from the first repository product to the second repository
product during migration, even though portions of the first
data objects are to be brought into the second repository
product via a separate process at a later time. In one embodi-
ment, most composite objects are handled with late binding.
With late binding 308, composites that are separately har-

30

6

vested at a later time can still use the same unique attributes to
find related lifecycle projects. One embodiment can also
leverage default values, populate enterprise-level attributes,
and create repository projects.

In one embodiment, certain utility tools enable the export-
ing of the first data objects into the XML schema, and enable
the remapping of the first data objects from the first logical
model to the second logical model. In one embodiment, users
do not need to perform any low-level database adjustments.
The XML schema preserves the high-level product data. In
one embodiment, a utility tool will perform runtime mapping
and generate the second logical model. For example, in one
embodiment, the utility tool generates the second logical
model within the second repository product.

FIG. 4 is a flow diagram of the functionality of the migrat-
ing data objects module 16 of FIG. 1 in accordance with one
embodiment. In one embodiment, the functionality of the
flow diagram of FIG. 4 is implemented by software stored in
memory or other computer readable or tangible medium, and
executed by a processor. In other embodiments, the function-
ality may be performed by hardware (e.g., through the use of
an application specific integrated circuit (“ASIC”), a pro-
grammable gate array (“PGA”), a field programmable gate
array (“FPGA”), etc.), or any combination of hardware and
software.

At 401, one embodiment exports first data objects from a
first repository product. As previously described, one
embodiment can use an XML schema to describe a first
logical model that describes the first data objects. The first
data objects exported from the first repository can be lifecycle
data objects.

At 402, one embodiment maps the first data objects to
second data objects of a second repository product. As previ-
ously described, the first data objects of the first repository
can be mapped to second data objects of the second repository
in a manner that preserves the first data objects and the rela-
tionships between the first data objects.

At 403, one embodiment performs trimming of the first
data objects. As previously described, trimming can comprise
data modification on the first data objects so that the first data
objects can be migrated to the corresponding second data
objects of the second repository product.

At 404, one embodiment creates placeholders for the first
data objects for later deployment binding. As previously
described, these placeholders can be used later when publish-
ing the first data objects from the first repository product to
the second repository product.

One embodiment uses an XML definition file to define a
structure for the project XML seed data files such as XML
seed data 303 of FIG. 3. In one embodiment, the XML defi-
nition file is expressed as follows:

<?xml version="1.0" encoding="windows-1252"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” xmlns="http://xml.oracle.com/AIA/PLWBOM/V1”
targetNamespace="http://xml.oracle.com/AIA/PLWBOM/V1” elementFormDefault="qualified”>

<xsd:element name="“PLW">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="“Process™>
<xsd:annotation>

<xsd:documentation>Project LifeCycle WorkBench Seed Data

Schema</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence™>

<xsd:element name="ProcessDetail”

type="“ProcessType”/>

<xsd:element name="“ProcessUuid”

type="“xsd:string”/>

US 9,286,330 B2

-continued

<xsd:element name="ParentProcessUuid”
type="“xsd:string”/>
<xsd:element name="Task” minOccurs="0"
maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element
name="TaskDetail” type="“TaskType”/>
<xsd:element
name="Scope” type="xsd:string”/>
<xsd:element
name="Svecompld” type="xsd:string” minOccurs="0" maxOccurs="unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ProcessBom” minOccurs="0">
<xsd:complexType>
<xsd:sequence™>
<xsd:element
name="ProcessBomDetail” type="“Process Type”/>
<xsd:element
name="BomStatus” type="xsd:string”/>
<xsd:element
name="TaskBom” minOccurs="0" maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element name="TaskBomDetail” type="TaskType”/>
<xsd:element name="TaskBomSource” type="xsd:string”/>
<xsd:element name=“SvcecompBomId” type="xsd:string” minOccurs="0" maxOccurs=“unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=“SvccompBom” minOccurs="0"
maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element
name="SvccompBomDetail” type="“Svccomp Type™/>
<xsd:element
name="SvccompBomId” type="xsd:string”/>
<xsd:element
name="Compositeld” type="xsd:string”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=“Svccomp” minOccurs="0" maxOccurs="“unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element name=“SvccompDetail”
type="“SvccompType”/>
<xsd:element name=“ReusedServiceObjectType”
type="“xsd:string” minOccurs="“0"/>
<xsd:element name=“ReusedServiceObjectID”
type="“xsd:string” minOccurs="“0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name=“Composite” minOccurs=“0" maxOccurs=“unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element name=“CompositeDetail”>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension
base="“CompositeType”/>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name=“CompositeXML”
type="“xsd:hexBinary” minOccurs=“0"/>
<xsd:element name=“CompositeRevID”
type="“xsd:hexBinary” minOccurs=“0"/>
<xsd:element name=“CompositeServiceElem”

US 9,286,330 B2

-continued

minOccurs="“0" maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element
name="ServiceElementID” type="xsd:string”/>
<xsd:element
name="CompositeServiceType” type="xsd:string”/>
<xsd:element
name="CompositeServiceName” type="xsd:string”/>
<xsd:element
name="ServiceElementXML” type="xsd:hexBinary”/>
<xsd:element
name="Audit” type=“CommonAuditType”/>
<xsd:element
name="DeployAttributeValue” type="“DeployAttributeValueType” minOccurs=“0" maxOccurs="“unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="“DeployAttributeValue”
type=“DeployAttributeValue Type” minOccurs=“0" maxOccurs="unbounded”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="ServiceElement” minOccurs="0"
maxOccurs="unbounded”>
<xsd:complexType>
<xsd:sequence™>
<xsd:element name="ServiceElementDetail”
type="“ServiceElementType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="“processCode”/>
<xsd:attribute name="version”/>
<xsd:attribute name="createDate”/>
<xsd:attribute name="uuid”/>
</xsd:complexType>
</xsd:element>
<xsd:complexType name=“CommonAuditType”>
<xsd:sequence>
<xsd:element name="CreatedBy” type="xsd:string”/>
<xsd:element name="CreationDate” type="“xsd:string”/>
<xsd:element name="LastUpdatedBy”/>
<xsd:element name="LastUpdateDate”/>
<xsd:element name="ObjectVersionNumber”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“ProcessType”>
<xsd:sequence>
<xsd:element name="ProcessName” type="xsd:string”/>
<xsd:element name="ProcessDesc” type="xsd:hexBinary”/>
<xsd:element name="Process Assumption” type=“xsd:hexBinary”/>
<xsd:element name="ProcessSource” type="xsd:string”/>
<xsd:element name="ProcessIndustry” type="“xsd:string™/>
<xsd:element name="ProcessCode” type="xsd:string”/>
<xsd:element name="ProcessType” type="xsd:string”/>
<xsd:element name="Status” type="xsd:string”/>
<xsd:element name="Version” type="xsd:string™/>
<xsd:element name="Audit” type=“CommonAuditType”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="TaskType”>
<xsd:sequence>
<xsd:element name="TaskID” type="xsd:string’/>
<xsd:element name="TaskName” type="xsd:string”/>
<xsd:element name="TaskDesc” type="xsd:hexBinary’/>
<xsd:element name="TaskUuid” type="“xsd:string”/>
<xsd:element name="Audit” type=“CommonAuditType”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Svccomp Type”>
<xsd:sequence>
<xsd:element name="SvccompID” type="xsd:string”/>
<xsd:element name="SvecompType” type="“xsd:string”/>
<xsd:element name="SvccompName” type="xsd:string”/>
<xsd:element name="SvecompDesc” type="xsd:hexBinary”/>
<xsd:element name="SvccompAssumption” type=“xsd:hexBinary”/>
<xsd:element name="ProductPillar” type="xsd:string”/>

US 9,286,330 B2

11

-continued

12

<xsd:element name="ProductFamily” type="“xsd:string”/>
<xsd:element name="ProductCode” type="“xsd:string”/>
<xsd:element name="SvecompGUID” type="xsd:string”/>
<xsd:element name="Audit” type=“CommonAuditType”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“CompositeType”>
<xsd:sequence>

<xsd:element name="“CompositeID” type="xsd:string”/>

<xsd:element name="CompositeName” type="xsd:string”/>
<xsd:element name="Source” type="“xsd:string”/>
<xsd:element name="Audit” type=“CommonAuditType”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ServiceElementType”>
<xsd:sequence>

<xsd:element name="ServiceElementID” type="xsd:string”/>
<xsd:element name="ServiceElementType” type="xsd:string”/>
<xsd:element name="ServiceName” type="xsd:string”/>
<xsd:element name="OperationName” type="“xsd:string”/>
<xsd:element name="“Namespace” type="xsd:string”/>
<xsd:element name="ProductPillar” type="xsd:string”/>
<xsd:element name="ProductFamily” type="“xsd:string”/>
<xsd:element name="ProductCode” type="“xsd:string”/>
<xsd:element name="Audit” type=“CommonAuditType”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=“DeployAttributeValueType”>
<xsd:sequence>

<xsd:element name="GroupNumber” type="xsd:string”/>
<xsd:element name="DeployAttributeValue” type="xsd:string”/>
<xsd:element name="DeployAttributeCode” type="“xsd:string”/>
<xsd:element name="Audit” type=“CommonAuditType”/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

As described above, certain embodiments are directed a
system that allows a user to migrate data objects from one
repository product to another repository product by mapping
first data objects, described by a first logical model, to second
data objects, described by a second logical mode, while pre-
serving all of the relationships among the different first data
objects.

As a result, embodiments provide a “smooth” migration
process while incorporating the need to preserve data by
creating intelligence to recreate similar objects in a new prod-
uct. The high level objects that are generated preserve the
logical model as well as the data between an old and new
product. Embodiments include a general XML to describe the
project lifecycle objects as well as the relationships between
them. The XML preserves the project lifecycle model in a
high-level, object oriented manner. Both the objects and rela-
tionships have their own unique identifiers. Further, dynamic
mapping, model trimming and late binding methods are intro-
duced in the migration process by one embodiment so that the
project lifecycle objects can be recreated in the new model.
One embodiment is specifically adapted for the transition of
objects between 11g and 12¢ while preserving the 11g project
lifecycle data.

Several embodiments are specifically illustrated and/or
described herein. However, it will be appreciated that modi-
fications and variations of the disclosed embodiments are
covered by the above teachings and within the purview of the
appended claims without departing from the spirit and
intended scope of the invention.

What is claimed is:
1. A non-transitory computer readable medium having
instructions stored thereon that, when executed by a proces-

35

40

45

55

65

sor, causes the processor to migrate first data objects from a
first repository product to a second repository product, the
migrating comprising:
exporting the first data objects from the first repository
product into a schema, the schema defining a logical
model of the first data objects;
mapping the first data objects to second data objects of the
second repository product;
trimming the first data objects so that the first data objects
are modified and can be migrated to the second reposi-
tory product;
creating placeholders within the second repository product
that uniquely identify attributes of each of the first data
objects for later deployment binding; and
publishing the first objects to the second repository product
based on the created placeholders,
wherein the first repository product uses a first logical
model and the second repository product utilizes a sec-
ond logical model.
2. The non-transitory computer readable medium of claim
1, wherein the first data objects comprise lifecycle data
objects, and the logical model of the first data objects
describes the first data objects and the relationships between
the first data objects.
3. The non-transitory computer readable medium of claim
1, wherein the schema is an extensible markup language
schema, and each first data object in the schema has a unique
identifier.
4. The non-transitory computer readable medium of claim
1, wherein the schema comprises a process, a task, a solution
component, and a bill of materials.
5. The non-transitory computer readable medium of claim
4, wherein relationships between solution components are

US 9,286,330 B2

13

modeled by a tree structure, and trimming the first data
objects comprises flattening the tree structure.

6. The non-transitory computer readable medium of claim
1, wherein the first repository product is a first type of object-
relational database, and the second repository product is a
second type of object-relational database.

7. The non-transitory computer readable medium of claim
1, wherein the first repository product uses a first logical
model having a first tree structure and the second repository
product utilizes a second logical model having a second tree
structure.

8. The non-transitory computer readable medium of claim
7, wherein the second tree structure is flatter than the first tree
structure.

9. A method for migrating first data objects from a first
repository product to a second repository product, the method
comprising:

exporting the first data objects from the first repository

product into a schema, the schema defining a logical
model of the first data objects;

mapping the first data objects to second data objects of the

second repository product;

trimming the first data objects so that the first data objects

are modified and can be migrated to the second reposi-
tory product;

creating placeholders within the second repository product

that uniquely identify attributes of each of the first data
objects for later deployment binding; and

publishing the first objects to the second repository product

based on the created placeholders,

wherein the first repository product uses a first logical

model and the second repository product utilizes a sec-
ond logical model.

10. The method of claim 9, wherein the first data objects
comprise lifecycle data objects, and the logical model of the
first data objects describes the first data objects and the rela-
tionships between the first data objects.

11. The method of claim 9, wherein the schema is an
extensible markup language schema, and each first data
object in the schema has a unique identifier.

12. The method of claim 9, wherein the schema comprises
aprocess, a task, a solution component, and a bill of materials.

10

15

20

25

35

40

14

13. The method of claim 12, wherein relationships between
solution components are modeled by a tree structure, and
trimming the first data objects comprises flattening the tree
structure.

14. The method of claim 9, wherein the first repository
product is a first type of object-relational database, and the
second repository product is a second type of object-rela-
tional database.

15. A system for migrating first data objects from a first
repository product to a second repository product, the system
comprising:

a processor;

a memory coupled to the processor;

an exporting module that exports the first data objects from
the first repository product into a schema, the schema
defining a logical model of the first data objects;

amapping module that maps the first data objects to second
data objects of the second repository product;

a trimming module that trims the first data objects so that
the first data objects are modified and can be migrated to
the second repository product;

a creating module that creates placeholders within the sec-
ond repository product that uniquely identify attributes
of each of the first data objects for later deployment
binding; and

a publishing module that publishes the first objects to the
second repository product based on the created place-
holders,

wherein the first repository product uses a first logical
model and the second repository product utilizes a sec-
ond logical model.

16. The system of claim 15, wherein the first data objects
comprise lifecycle data objects, and the logical model of the
first data objects describes the first data objects and the rela-
tionships between the first data objects.

17. The system of claim 15, wherein the schema is an
extensible markup language schema, and each first data
object in the schema has a unique identifier.

18. The system of claim 15, wherein the schema comprises
aprocess, a task, a solution component, and a bill of materials.

19. The system of claim 17, wherein relationships between
solution components are modeled by a tree structure, and
trimming the first data objects comprises flattening the tree
structure.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,286,330 B2 Page 1of1
APPLICATION NO. 1 13/894755

DATED : March 15, 2016

INVENTOR(S) :Gau et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

In column 14, line 39, in claim 19, delete “claim 17,” and insert -- claim 18, --, therefor.

Signed and Sealed this
Twentieth Day of September, 2016

Decbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

